• 687374918
  • info@devacademy.es

Programa de introducción a Machine Learning práctico con Python (10hrs)

Detalle del plan de formación

El Machine Learning gana relevancia y muchas empresas deciden que es vital para su estrategia, pero la falta de personal con experiencia en el área hace que muchos desarrolladores tengan que aprender Machine Learning sobre la marcha, a veces sin tiempo para poder elegir las herramientas correctas.

Python es un lenguaje cómodo y fácil de aprender, y cuenta con gran número de librerías de código libre que cubren casi el 100% de las necesidades de cualquier desarrollador que se especialice en Machine Learning.

El curso está planteado de forma modular con el fin de dar una introducción práctica a los alumnos con el fin de aprender las diferentes técnicas que existen en Machine Learning y su aplicación con librerías específicas para ello en Python. Los objetivos son:

  1. Introducir las principales librerías que podemos encontrar en Python para tratamiento y visualización de datos
  2. Dar a conocer los principales algoritmos para resolver problemas de Machine Learning.
  3. Introducir desde un perspectiva teórico-práctica técnicas de Machine Learning utilizando el módulo Scikit-learn en Python

Temario

Introducción a Machine Learning

  • Introducción al aprendizaje automático
  • Definición y flujo de un proceso de Machine Learning
  • Tipos de aprendizaje automático
  • Aprendizaje supervisado vs no supervisado
  • Problema del sobreentrenamiento

Ecosistema de librerías básicas en proyectos Machine Learning

  • Librerías de Python para proyectos de Data Science
    • Scikit
    • Pandas
    • Matplotlib
    • Seaborn
    • Bokeh

Introducción a la ingesta y transformación de datos

Análisis básico de datos

Machine Learning práctico con Scikit-Learn 

  • Introducción a scikit-learn
  • Algoritmos de Machine Learning en scikit-learn
  • Introducción a algoritmos de CLUSTERING
  • Introducción a algoritmos de CLASIFICACIÓN
  • Introducción a algoritmos de REGRESIÓN
  • Selección y configuración de modelos

 

Casos prácticos

Durante los programas de aprendizaje de DevAcademy, los alumnos aplican la teoría con casos prácticos guiados por los profesores buscando adquirir el mayor aprendizaje durante las clases.

Fechas, horario y lugar

Los cursos de DevAcademy son en horario NO LABORAL los VIERNES (16hrs – 21hrs) y SÁBADOS (9hrs-14hrs), pensado para que puedan asistir aquellos que estén trabajando.

FECHAS: 15 y 16 de Diciembre de 2017

El curso tendrá lugar en las aulas situadas en las instalaciones DevAcademy

 

Responsabilidades profesor

Presentar el contenido conforme lo presentado en el programa de formación
Dar acceso al material necesario (PDFs, ejercicios, software, etcs) para el curso contratado.

Responsabilidades alumno

Participar en la formación en el periodo determinado, se mandará un email previo a todos los alumnos, con lo necesario, pero para información será necesario que el alumno pueda disponer de los requisitos mínimos necesarios para la participación en la formación, siendo estos los siguientes:
Es necesario tener instalada la distribución de Python de Anaconda, preferentemente la versión de Python3.
Se usarán principalmente las librerias numpy, scipy, pandas, scikit-learn, xgboost, keras y optunity. Todos ellos se pueden instalar con conda (preferiblemente) o pip (en los casos en que no se pueda con conda).
Es recomendable trabajar en un entorno Linux, pero Anaconda está disponible también para Mac y Windows.
Se proporcionarán las slides del curso, junto con todo el código visto y todos los ejemplos completos.
Poseer privilegios de administración

Observaciones importantes

Confirmaciones
Las confirmaciones serán enviadas a la dirección de e-mail enviada por el alumno

Cancelaciones
Los plazos para el cancelamiento de inscripciones solicitadas, son de 5 días laborales antes del inicio del curso.
En caso de cancelamiento fuera de plazo por parte del alumno, DevAcademy se reserva el derecho a cobrar un porcentaje (20%) del valor del curso.
DevAcademy se reserva el derecho de cancelar o posponer la formación, siempre y cuando avise al contratante y/o devuelva el importe íntegro en caso de cancelación

Obligaciones del alumno
Es obligatorio que el alumno cumpla con todos las obligaciones recomendadas por el profesor para seguir todos los ejercicios y no demorar ni perjudicar la clase. Es posible que días antes se envíe un email como recordatorio al alumno con instrucciones a seguir u obligaciones desarrollar para poder estar preparado al comienzo de la clase.

 



DevAcademy 2016 - info@devacademy.es - Telf: 687374918